One of the great endeavors of modern science is to understand the brain. This organ, the most complex machine we know, is a miracle of evolutionary biology. It processes a potent firehose of information to set goals, achieve tasks and navigate complex environments, often in ways that put the world’s most powerful supercomputers to shame. Remarkably, it weighs about the same as a bag of flour and runs on little more than a bowl of porridge.
And yet, at the heart of this amazing capability is a paradox, say Jieyu Zheng and Markus Meister at the California Institute of Technology in Pasadena. Human senses pump information into the brain at an impressive rapid rate and yet the information that comes out in the form of language and actions is vastly slower. It’s as if opening the floodgates at the Hoover Dam released nothing more than a dribble.
How come? Zheng and Meister explore this question and say it represents a profound problem of neuroscience that is ripe for experimental investigation. Their call to action has important implications for our understanding of the way the brain works, for the nature of neural networks and for practical applications such as assistive technologies for the blind and for brain computer interfaces in general, such as Elon Musk’s Neuralink technology.